DNA Test Report

Fembark

embk.me/chloe3917

BREED MIX

Cavalier King Charles Spaniel : 50.0%
Maltese : 27.1%
Havanese : 17.3%
Coton de Tulear : 5.6%

GENETIC STATS

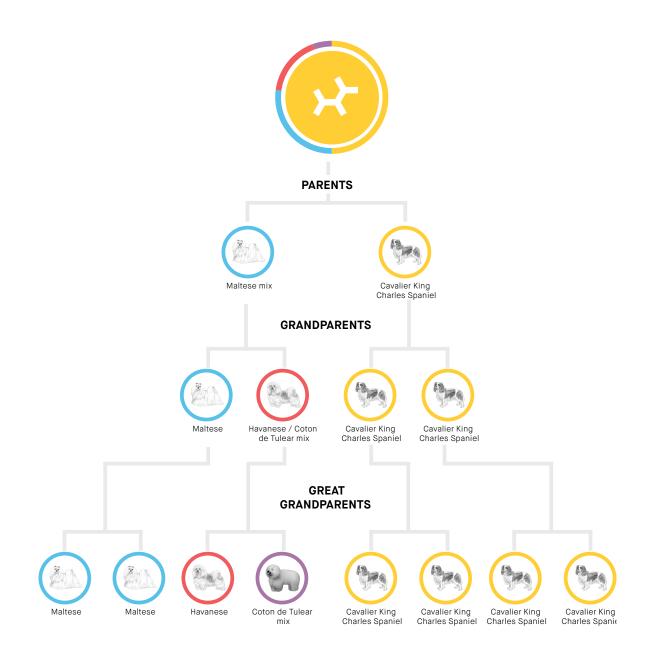
Wolfiness: 1.3 % **MEDIUM** Predicted adult weight: **18 lbs** Life stage: **Geriatric** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-15012880 Swab number: 31220312504794

BREED MIX BY CHROMOSOME

Our advanced test identifies from where Chloe inherited every part of the chromosome pairs in her genome.


	Cavalier King	Charles	Spaniel	Breed colors: Maltese	Havanese	Coton de Tulear	
1		2		3		4	
5		6		7		8	
9		10		11		12	
13		14		15		16	
17		18		19		20	
21		22		23		24	
25		26		27		28	
29		30		31		32	
33	=	34		35	-	36	_
37		38					

DNA Test Report

embk.me/chloe3917

FAMILY TREE

Our algorithms predict this is the most likely family tree to explain Chloe's breed mix, but this family tree may not be the only possible one.

Fun Fact

The breed experienced two large bursts in popularity. The first is when Queen Victoria revived the dying breed. The second was when Charlotte, a popular character from the popular show Sex and the City adopted one on TV. Test Date: January 16th, 2023

embk.me/chloe3917

CAVALIER KING CHARLES SPANIEL

The Cavalier King Charles Spaniel is one of the most popular dog breeds in the United States, and with good reason. Their affectionate personalities combined with their need to be close to their humans make them a lovely breed of choice for families. They tend to get along well with children and peaceably with other dogs and animals in the home (though as the breed used to be used for hunting, caution around small animals should be exercised). The Cavalier has an interesting history -- their ancestors were dogs of the British monarchy, but over time, the breed began to die out as dogs with shorter muzzles were favored in the 1800s. They were crossed with Pugs and some other breeds to change their appearance. However, Roswell Eldridge sought out King Charles Spaniels that had longer muzzles, and recreated the Cavalier as it used to be from those dogs.

English Toy Spaniel Sibling breed

English Springer Spaniel Cousin breed

English Cocker Spaniel Cousin breed

Cocker Spaniel Cousin breed

Sussex Spaniel Cousin breed

Fembark

Fun Fact

The Maltese almost became extinct in the 17th and 18th centuries as attempts were made to breed them as small as squirrels. Test Date: January 16th, 2023

embk.me/chloe3917

MALTESE

The Maltese is a playful toy dog, instantly recognizable by their long and white silky coat. This compact little pooch has a long history, with an origin tracing back at least two millennia. It is believed these guys first popped up in the Mediterranean. The Maltese was popular among British royalty by the end of the 1500s, along with a prominent history among French aristocrats, ancient Egyptians and the Roman Empire. The Maltese we recognize today was developed by English breeders and first made their way to the U.S in the late 1800s. They were first recognized by the AKC as an official breed in 1888. While Maltese dogs appear gentle, they are quite energetic and agile canines that compete in many performance events. That said, this breed is well suited to being a lapdog with a daily short burst of exercise sufficient to maintain a healthy dog. Don't let their perceived innocence fool you, the Maltese is a bold and confident dog that will often challenge larger breeds. They also make a good watch dog, due to their intelligence and tendency to bark at strangers and other dogs. Their eagerness to please makes them relatively easy to train, which is necessary to ensure Maltese dogs recognize boundaries and develop into a well rounded dog. The Maltese is a glamorous dog that can be high maintenance. Their impressive coat doesn't shed heavily but does requires regular brushing. This miniature breed ranks as the 31st most popular breed by the AKC.

Havanese Cousin breed

Coton de Tulear Cousin breed

Bichon Frise Cousin breed

Fun Fact

The Havanese dog has boasted some famous owners - Joan Rivers, Venus Williams and Ernest Hemingway, to name a few. Test Date: January 16th, 2023

embk.me/chloe3917

HAVANESE

The Havanese dog was bred as a companion dog to the Cuban aristocracy in the 1800s. This highly people-oriented breed is energetic and lively that often perform a number of functions beyond a lapdog, from serving as a therapy dog to appearing in circus shows. The origin of this thick and long coated breed can be traced back to the companion dogs of the Spanish settlers that claimed Cuba in the late 15th century. These dogs, the ancestors of the Bichon breed family, interbred and formed into the Havanese breed we know today. While being popular among many aristocratic Cuban families and then becoming trendy in Europe in the mid 1800s, this affectionate breed almost became extinct in the 1950s around the time of the Cuban Revolution. Just 11 dogs were brought to America at the time, which can now account for the vast majority of the Havanese population outside of Cuba today. Havanese dogs thrive on human interaction to such a level that they are commonly referred to as "Velcro dogs". Exposure to socialization as a young puppy helps Havanese dogs develop into both a confident and playful family pet. However, this breed's reliance on interaction sees them suffer from separation anxiety when left alone. Their thick, often curly coat can require regular grooming when kept long. While often being content with sitting on your lap watching the day go by, the Havanese dog has a lot of energy to burn and requires a considerable amount of exercise each day. This entertaining breed was first recognized by the AKC in 1995, and is now the 22nd most popular breed.

Maltese Cousin breed

Poodle (Toy) Cousin breed

Poodle (Miniature) Cousin breed

Poodle (Standard) Cousin breed

Bichon Frise Cousin breed

Coton de Tulear Cousin breed

Fun Fact

Some versions of this breed's history allude to a shipwreck off the port city of Tulear (now Toliara). While the sailors perished, their little white dogs were able to swim to shore. According to the story, these dogs bred with native Malagasy dogs to give rise to the Coton de Tulear we know today. While no one knows if this story is accurate, it is true that merchants transported small companion dogs like the Coton. Test Date: January 16th, 2023

Fembark

embk.me/chloe3917

COTON DE TULEAR

The Coton de Tulear is a small breed with a big history. These charming companion dogs originated in Madagascar, where they're often found today both as loving pets and as free-ranging street or village dogs. The Coton belongs to the Bichon family (along with breeds like the Bichon Frise and Maltese), descended from a breed called the Bichon Tenerife. The Tenerife likely interbred with a type of Malagasy dog known as the Coton de Reunion, which is now extinct, as well as the Morondava Hunting Dog and various terriers. Historically, the Coton de Tulear was owned exclusively by the ruling tribal monarchy-the Merina. It was lemur biologist Dr. Robert Jay Russell who brought the first Cotons to America in 1974. Their descendants guickly captured the hearts of everyone they met. This breed earned its name from its cotton-like coat, which comes in many colors-the most common being white and piebald (black and white markings). Cotons tend to fade in color as they grow, so even a Coton with black markings could end up white or grey as an adult. Some kennel clubs only allow Cotons with no colored spots or minimal markings. Because some show lines are being selected for white coloring, it's more common to see piebald in Malagasy Coton lines. Size can also vary by population and line, though Cotons should be on the smaller side. Occasionally, a "tall Coton" is produced-these are purebred Cotons who didn't inherit the genetic variant for short legs. Because the Coton was bred for companionship for many years, they want to spend as much time with their humans as possible. These are wonderful, loving family dogs who will amuse everyone with their clownish antics. Cotons especially like sitting on the edge of a couch to look out the window and announce visitors. Like many companion breeds, they can be prone to separation anxiety. Some Cotons may be very vocal, so training is important to curb that behavior early if it's undesirable. Cotons are generally good with children and other dogs. It's common for owners to have multiple Cotons as companions for each other.

Maltese Cousin breed

Havanese Cousin breed

Test Date: January 16th, 2023

embk.me/chloe3917

MATERNAL LINE

Through Chloe's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

HAPLOTYPE: A382

Part of the large A1a haplogroup, this haplotype occurs most frequently in Labrador Retrievers, Golden Retrievers, and Chesapeake Bay Retrievers.

Fembark

DNA Test Report

involved.

Test Date: January 16th, 2023

embk.me/chloe3917

TRAITS: BASE COAT COLOR

TRAIT	RESULT
Dark or Light Fur E (Extension) Locus Gene: Melanocortin Receptor 1 (MC1R) Genetic Result: ee	
This gene helps determine whether a dog can produce dark (black or brown) hairs or lighter yellow or red hairs. Any result except for ee means that the dog can produce dark hairs. An ee result means that the dog does not produce dark hairs at all, and will have lighter yellow or red hairs over their entire body.	
Did You Know? If a dog has a ee result then the fur's actual shade can range from a deep copper to yellow/gold to cream - the exact color cannot be predicted solely from this result, and will depend on other genetic factors.	
Dark brown pigment Cocoa Gene: HPS3 Genetic Result: NN	
Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the Nco genotype will produce black pigment, but can pass the co variant on to their puppies. Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the Bb or BB genotypes at the B locus. Did You Know? The co variant and the dark brown "cocoa" coat color have only been documented in French Bulldogs. Dogs with the cocoa coat color are sometimes born with light brown coats that darken as they reach maturity.	No impact on skin color
Red Pigment Intensity LINKAGE I (Intensity) Loci Genetic Result: Intermediate Red Pigmentation	
Intensity refers to the concentration of red pigment in the coat. Dogs with more densely concentrated (intense) pigment will be a deeper red, while dogs with less concentrated (dilute) pigment will be tan, yellow, cream, or white. Five locations in the dog genome explain approximately 70% of red pigmentation intensity variation across all dogs. Because the locations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test. Did You Know? One of the genes that influences pigment intensity in dogs, TYR, is also responsible for	Any pigmented fur likely yellow or tan
intensity variation in domestic mice, cats, cattle, rabbits, and llamas. In dogs and humans, more genes are	

embk.me/chloe3917

TRAITS: BASE COAT COLOR (CONTINUED)

TRAIT

Brown or Black Pigment | B (Brown) Locus | Gene: Tyrosinase Related Protein 1 (TYRP1) | Genetic Result: BB

This gene helps determine whether a dog produces brown or black pigments. Dogs with a **bb** result produce brown pigment instead of black in both their hair and skin, while dogs with a **Bb** or **BB** result produce black pigment. Dogs that have **ee** at the E (Extension) Locus and **bb** at this B (Brown) Locus are likely to have red or cream coats and brown noses, eye rims, and footpads, which is sometimes referred to as "Dudley Nose" in Labrador Retrievers.

Did You Know? "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Color Dilution | D (Dilute) Locus | Gene: Melanophilin (MLPH) | Genetic Result: DD

This gene helps determine whether a dog has lighter "diluted" pigment. A dog with a **Dd** or **DD** result will not be dilute. A dog with a **dd** result will have all their black or brown pigment lightened ("diluted") to gray or light brown, and may lighten red pigment to cream. This affects their fur, skin, and sometimes eye color. The D locus result that we report is determined by two different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and a less common allele known as "**d2**". Dogs with one **d1** allele and one **d2** allele are typically dilute. To view your dog's **d1** and **d2** test results, click the "SEE DETAILS" link in the upper right hand corner of the "Base Coat Color" section of the Traits page, and then click the "VIEW SUBLOCUS RESULTS" link at the bottom of the page.

Did You Know? There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Dilute dogs, especially in certain breeds, have a higher incidence of Color Dilution Alopecia which causes hair loss in some patches.

RESULT

Likely black colored nose/feet

Dark (non-dilute) skin

Test Date: January 16th, 2023

embk.me/chloe3917

RESULT

TRAITS: COAT COLOR MODIFIERS

TRAIT

Hidden Patterning | K (Dominant Black) Locus | Gene: Canine Beta-Defensin 103 (CBD103) | Genetic Result: k^yk^y

This gene helps determine whether the dog has a black coat. Dogs with a **k**^y**k**^y result will show a coat color pattern based on the result they have at the A (Agouti) Locus. A **K**^B**K**^B or **K**^B**k**^y result means the dog is dominant black, which overrides the fur pattern that would otherwise be determined by the A (Agouti) Locus. These dogs will usually have solid black or brown coats, or if they have **ee** at the E (Extension) Locus then red/cream coats, regardless of their result at the A (Agouti) Locus. Dogs who test as **K**^B**k**^y may be brindle rather than black or brown.

No impact on coat color

No impact on coat

pattern

Did You Know? Even if a dog is "dominant black" several other genes could still impact the dog's fur and cause other patterns, such as white spotting.

Body Pattern | A (Agouti) Locus | Gene: Agouti Signalling Protein (ASIP) | Genetic Result: $a^{t}a^{t}$

This gene is responsible for causing different coat patterns. It only affects the fur of dogs that do not have ee at the E (Extension) Locus and do have $k^y k^y$ at the K (Dominant Black) Locus. It controls switching between black and red pigment in hair cells, which means that it can cause a dog to have hairs that have sections of black and sections of red/cream, or hairs with different colors on different parts of the dog's body. Sable or Fawn dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti or Wolf Sable dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Did You Know? The ASIP gene causes interesting coat patterns in many other species of animals as well as dogs.

Facial Fur Pattern | E (Extension) Locus | Gene: Melanocortin Receptor 1 (MC1R) | Genetic Result: ee

In addition to determining if a dog can develop dark fur at all, this gene can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of \mathbf{E}^{m} in their result will have a mask, which is dark facial fur as seen in the German Shepherd and Pug. Dogs with no \mathbf{E}^{m} in their result but one or two copies of \mathbf{E}^{g} will instead have a "widow's peak", which is dark forehead fur.

No dark fur anywhere

Did You Know? The widow's peak is seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino".

Test Date: January 16th, 2023

embk.me/chloe3917

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

TRAIT

Saddle Tan | Gene: RALY | Genetic Result: II

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Did You Know? The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd.

White Spotting | S (White Spotting) Locus | Gene: MITF | Genetic Result: Ssp

This gene is responsible for most of the white spotting observed in dogs. Dogs with a result of **spsp** will have a nearly white coat or large patches of white in their coat. Dogs with a result of **Ssp** will have more limited white spotting that is breed-dependent. A result of **Ss** means that a dog likely has no white or minimal white in their coat. The S Locus does not explain all white spotting patterns in dogs and other causes are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their result at this gene.

Did You Know? Any dog can have white spotting regardless of coat color. The colored sections of the coat will reflect the dog's other genetic coat color results.

Roan LINKAGE | R (Roan) Locus | Gene: USH2A | Genetic Result: rr

This gene, along with the S Locus, regulates whether a dog will have roaning. Dogs with at least one copy of **R** will likely have roaning on otherwise uniformly unpigmented white areas created by the S Locus. Roan may not be visible if white spotting is limited to small areas, such as the paws, chest, face, or tail. The extent of roaning varies from uniform roaning to non-uniform roaning, and patchy, non-uniform roaning may look similar to ticking. Roan does not appear in white areas created by other genes, such as a combination of the E Locus and I Locus (for example, Samoyeds). The roan pattern can appear with or without ticking.

Likely no impact on coat pattern

Likely to have some

white areas in coat

Did You Know? Roan, tick, and Dalmatians' spots become visible a few weeks after birth. The R Locus is probably involved in the development of Dalmatians' spots.

RESULT

No impact on coat pattern

Test Date: January 16th, 2023

embk.me/chloe3917

RESULT

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

TRAIT

Merle | M (Merle) Locus | Gene: PMEL | Genetic Result: mm

This gene is responsible for mottled or patchy coat color in some dogs. Dogs with an **M*m** result are likely to appear merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to have merle or double merle coat patterning. Dogs with an **mm** result are unlikely to have a merle coat pattern.

Did You Know? Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog.

Harlequin | Gene: PSMB | Genetic Result: hh

This gene, along with the M Locus, determines whether a dog will have harlequin patterning. This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin.

Did You Know? While many harlequin dogs are white with black patches, some dogs have grey, sable, or brindle patches of color, depending on their genotypes at other coat color genes.

No impact on coat color

No impact on coat pattern

Test Date: January 16th, 2023

embk.me/chloe3917

TRAITS: OTHER COAT TRAITS

TRAIT	RESULT
Furnishings LINKAGE Gene: RSPO2 Genetic Result: FI	
This gene is responsible for "furnishings", which is another name for the mustache, beard, and eyebrows that are characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with an FF or FI result is likely to have furnishings. A dog with an II result will not have furnishings. We measure this result using a linkage test. Did You Know? In breeds that are expected to have furnishings, dogs without furnishings are the exception	Likely furnished (mustache, beard, and/or eyebrows)
- this is sometimes called an "improper coat".	
Coat Length Gene: FGF5 Genetic Result: TT	
This gene is known to affect hair/fur length in many different species, including cats, dogs, mice, and humans. In dogs, a TT result means the dog is likely to have a long, silky coat as seen in the Yorkshire Terrier and the Long Haired Whippet. A GG or GT result is likely to mean a shorter coat, like in the Boxer or the American Staffordshire Terrier.	Likely long coat
Did You Know? In certain breeds, such as Corgi, the long coat is described as "fluff."	
Shedding Gene: MC5R Genetic Result: TT	
This gene affects how much a dog sheds. Dogs with furnishings or wire-haired coats tend to be low shedders regardless of their result for this gene. In other dogs, a CC or CT result indicates heavy or seasonal shedding, like many Labradors and German Shepherd Dogs. Dogs with a TT result tend to be lighter shedders, like Boxers, Shih Tzus and Chihuahuas.	Likely light shedding
Coat Texture Gene: KRT71 Genetic Result: CC	
For dogs with long fur, dogs with a TT or CT result will likely have a wavy or curly coat like the coat of Poodles and Bichon Frises. Dogs with a CC result will likely have a straight coat—unless the dog has a "Likely Furnished" result for the Furnishings trait, since this can also make the coat more curly. Did You Know? Dogs with short coats may have straight coats, whatever result they have for this gene.	Likely wavy coat

Test Date: January 16th, 2023

embk.me/chloe3917

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT	RESULT
Hairlessness (Terrier type) Gene: SGK3 Genetic Result: NN	Very unlikely to be
This gene is responsible for Hairlessness in the American Hairless Terrier. Dogs with the DD result are likely to be hairless. Dogs with the ND genotype will have a normal coat, but can pass the D variant on to their offspring.	hairless
Oculocutaneous Albinism Type 2 LINKAGE Gene: SLC45A2 Genetic Result: NN	
This gene causes oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism. Dogs with a DD result will have OCA. Effects include severely reduced or absent pigment in the eyes, skin, and hair, and sometimes vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a ND result will not be affected, but can pass the mutation on to their offspring. We measure this result using a linkage test.	Likely not albino
Did You Know? This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual.	

Test Date: January 16th, 2023

embk.me/chloe3917

Likely medium or long

muzzle

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length | Gene: BMP3 | Genetic Result: CC

This gene affects muzzle length. A dog with a **AC** or **CC** result is likely to have a medium-length muzzle like a Staffordshire Terrier or Labrador, or a long muzzle like a Whippet or Collie. A dog with a **AA** result is likely to have a short muzzle, like an English Bulldog, Pug, or Pekingese.

Did You Know? At least five different genes affect snout length in dogs, with BMP3 being the only one with a known causal mutation. For example, the muzzle length of some breeds, including the long-snouted Scottish Terrier or the short-snouted Japanese Chin, appear to be caused by other genes. This means your dog may have a long or short snout due to other genetic factors. Embark is working to figure out what these might be.

Tail Length | Gene: T | Genetic Result: CC

This is one of the genes that can cause a short bobtail. Most dogs have a **CC** result and a long tail. Dogs with a **CG** result are likely to have a bobtail, which is an unusually short or absent tail. This can be seen in many "natural bobtail" breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with such a result do not survive to birth.

Did You Know? While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, it is not always caused by this gene. This suggests that other unknown genetic effects can also lead to a natural bobtail.

Hind Dew Claws | Gene: LMBR1 | Genetic Result: CC

This is one of the genes that can cause hind dew claws, which are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with a **CT** or **TT** result have about a 50% chance of having hind dewclaws. Hind dew claws can also be caused by other, still unknown, genes. Embark is working to figure those out.

Unlikely to have hind dew claws

Likely normal-length

tail

Did You Know? Hind dew claws are commonly found in certain breeds such as the Saint Bernard.

embk.me/chloe3917

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Back Muscling & Bulk (Large Breed) | Gene: ACSL4 | Genetic Result: CC

This gene can cause heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. A dog with the **TT** result is likely to have heavy muscling. Leaner-shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound generally have a **CC** result. The **TC** result also indicates likely normal muscling.

Did You Know? This gene does not seem to affect muscling in small or even mid-sized dog breeds with lots of back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Eye Color LINKAGE | Gene: ALX4 | Genetic Result: NN

This gene is associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (nonmerle) Australian Shepherds. Dogs with a **DupDup** or **NDup** result are more likely to have blue eyes, although some dogs may have only one blue eye or may not have blue eyes at all; nevertheless, they can still pass blue eyes to their offspring. Dogs with a **NN** result may have blue eyes due to other factors, such as merle or white spotting. We measure this result using a linkage test.

Did You Know? Embark researchers discovered this gene by studying data from dogs like yours. Who knows what we will be able to discover next? Answer the questions on our research surveys to contribute to future discoveries!

Likely normal muscling

Less likely to have blue eyes

Test Date: January 16th, 2023

embk.me/chloe3917

TRAITS: BODY SIZE

TRAIT	RESULT
Body Size 1 Gene: IGF1 Genetic Result: NI This is one of several genes that influence the size of a dog. A result of II for this gene is associated with smaller body size. A result of NN is associated with larger body size.	e
Body Size 2 Gene: IGFR1 Genetic Result: GG This is one of several genes that influence the size of a dog. A result of AA for this gene is associated with smaller body size. A result of GG is associated with larger body size.	
Body Size 3 Gene: STC2 Genetic Result: TA This is one of several genes that influence the size of a dog. A result of AA for this gene is associated with smaller body size. A result of TT is associated with larger body size.	e
Body Size 4 Gene: GHR - E191K Genetic Result: GA This is one of several genes that influence the size of a dog. A result of AA for this gene is associated with smaller body size. A result of GG is associated with larger body size.	e
Body Size 5 Gene: GHR - P177L Genetic Result: CT This is one of several genes that influence the size of a dog. A result of TT for this gene is associated with smaller body size. A result of CC is associated with larger body size.	e

Test Date: January 16th, 2023

embk.me/chloe3917

TRAITS: PERFORMANCE

TRAIT	RESULT
Altitude Adaptation Gene: EPAS1 Genetic Result: GG	
This gene causes dogs to be especially tolerant of low oxygen environments, such as those found at high elevations. Dogs with a AA or GA result will be less susceptible to "altitude sickness."	Normal altitude tolerance
Did You Know? This gene was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.	
Appetite LINKAGE Gene: POMC Genetic Result: NN	
This gene influences eating behavior. An ND or DD result would predict higher food motivation compared to NN result, increasing the likelihood to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.	Normal food motivation
Did You Know? POMC is actually short for "proopiomelanocortin," and is a large protein that is broken up into several smaller proteins that have biological activity. The smaller proteins generated from POMC control, among other things, distribution of pigment to the hair and skin cells, appetite, and energy expenditure.	

DNA Test Report

Test Date: January 16th, 2023

embk.me/chloe3917

CLINICAL TOOLS

These clinical genetic tools can inform clinical decisions and diagnoses. These tools do not predict increased risk for disease.

Alanine Aminotransferase Activity (GPT)

Chloe's baseline ALT level is likely to be Normal

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

Test Date: January 16th, 2023

embk.me/chloe3917

HEALTH REPORT

How to interpret Chloe's genetic health results:

If Chloe inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Chloe for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

And inherited one variant that you should learn more about.

Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVD	D	٥
Degenerative Myelopathy, DM		0
Breed-Relevant Genetic Conditions	9 variants not detected	<
Additional Genetic Conditions	223 variants not detected	<

DNA Test Report

Test Date: January 16th, 2023

embk.me/chloe3917

HEALTH REPORT

Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD (FGF4 retrogene - CFA12)

Chloe inherited one copy of the variant we tested

Chloe is at increased risk for Type I IVDD

How to interpret this result

Chloe has one copy of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog's legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

When signs & symptoms develop in affected dogs

Signs of CDDY are recognized in puppies as it affects body shape. IVDD is usually first recognized in adult dogs, with breed specific differences in age of onset.

Signs & symptoms

Research indicates that dogs with one or two copies of this variant have a similar risk of developing IVDD. However, there are some breeds (e.g. Beagles and Cocker Spaniels, among others) where this variant has been passed down to nearly all dogs of the breed and most do not show overt clinical signs of the disorder. This suggests that there are other genetic and environmental factors (such as weight, mobility, and family history) that contribute to an individual dog's risk of developing clinical IVDD. Signs of IVDD include neck or back pain, a change in your dog's walking pattern (including dragging of the hind limbs), and paralysis. These signs can be mild to severe, and if your dog starts exhibiting these signs, you should schedule an appointment with your veterinarian for a diagnosis.

How vets diagnose this condition

For CDDY, dogs with one copy of this variant may have mild proportional differences in their leg length. Dogs with two copies of this variant will often have visually longer bodies and shorter legs. For IVDD, a neurological exam will be performed on any dog showing suspicious signs. Based on the result of this exam, radiographs to detect the presence of calcified discs or advanced imaging (MRI/CT) to detect a disc rupture may be recommended.

How this condition is treated

IVDD is treated differently based on the severity of the disease. Mild cases often respond to medical management which includes cage rest and pain management, while severe cases are often treated with surgical intervention. Both conservative and surgical treatment should be followed up with rehabilitation and physical therapy.

DNA Test Report

Test Date: January 16th, 2023

embk.me/chloe3917

HEALTH REPORT

Degenerative Myelopathy, DM (SOD1A)

Chloe inherited one copy of the variant we tested

What does this result mean?

Because this variant is inherited in an autosomal recessive manner (meaning dogs need two copies of the variant to develop the disease), Chloe is unlikely to develop this condition due to the variant.

What is Degenerative Myelopathy, DM?

The dog equivalent of Amyotrophic Lateral Sclerosis, or Lou Gehrig's disease, DM is a progressive degenerative disorder of the spinal cord. Because the nerves that control the hind limbs are the first to degenerate, the most common clinical signs are back muscle wasting and gait abnormalities.

When signs & symptoms develop in affected dogs

Affected dogs do not usually show signs of DM until they are at least 8 years old.

How vets diagnose this condition

Definitive diagnosis requires microscopic analysis of the spinal cord after death. However, veterinarians use clues such as genetic testing, breed, age, and other diagnostics to determine if DM is the most likely cause of your dog's clinical signs.

How this condition is treated

As dogs are seniors at the time of onset, the treatment for DM is aimed towards increasing their comfort through a combination of lifestyle changes, medication, and physical therapy.

Actions to take if your dog is affected

• Giving your dog the best quality of life for as long as possible is all you can do after receiving this diagnosis.

Test Date: January 16th, 2023

embk.me/chloe3917

BREED-RELEVANT CONDITIONS TESTED

Chloe did not have the variants that we tested for, that are relevant to her breeds:

- 🔀 Von Willebrand Disease Type I, Type I vWD (VWF)
- 🔽 Progressive Retinal Atrophy, prcd (PRCD Exon 1)
- 😴 Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)
- 🔀 Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9)
- Primary Hyperoxaluria (AGXT)
- Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)
- 😴 Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)
- 🛃 Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)
- C Episodic Falling Syndrome (BCAN)

Test Date: January 16th, 2023

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

Chloe did not have the variants that we tested for, in the following conditions that the potential effect on dogs with Chloe's breeds may not yet be known.

- MDR1 Drug Sensitivity (ABCB1)
- P2Y12 Receptor Platelet Disorder (P2Y12)
- 🔀 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant)
- 😴 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)
- Factor VII Deficiency (F7 Exon 5)
- 😴 Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant)
- 🜄 Factor VIII Deficiency, Hemophilia A (F8 Exon 11, German Shepherd Variant 1)
- 😴 Factor VIII Deficiency, Hemophilia A (F8 Exon 1, German Shepherd Variant 2)
- 💽 Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)
- Thrombopathia (RASGRP1 Exon 8, Landseer Variant)
- 💽 Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)
- 💽 Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)
- 🗸 Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)
- 📀 Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)
- 😋 Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)
- 😴 Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)
- Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)
- Canine Elliptocytosis (SPTB Exon 30)
- 😴 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)
- 😴 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)
- 🝼 May-Hegglin Anomaly (MYH9)
- 💎 Prekallikrein Deficiency (KLKB1 Exon 8)
- 📀 Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)

DNA Test Report

Test Date: January 16th, 2023

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

- 💽 Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)
- Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)
- 💎 Trapped Neutrophil Syndrome, TNS (VPS13B)
- 🔀 Ligneous Membranitis, LM (PLG)
- 🔇 Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F)
- Methemoglobinemia (CYB5R3)
- 🔀 Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)
- Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)
- 🔀 Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)
- Congenital Dyshormonogenic Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)
- Complement 3 Deficiency, C3 Deficiency (C3)
- 😴 Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)
- 🜄 Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)
- 😴 X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)
- X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)
- 😴 Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)
- Progressive Retinal Atrophy, rcd3 (PDE6A)
- 💎 Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)
- 💎 Progressive Retinal Atrophy, PRA1 (CNGB1)
- Progressive Retinal Atrophy (SAG)
- 🔇 Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)
- 🔇 Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)
- Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)
- Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)
- 🔀 X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)

DNA Test Report

Test Date: January 16th, 2023

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

- Progressive Retinal Atrophy, PRA3 (FAM161A)
- 💽 Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1)
- 🌄 Day Blindness, Cone Degeneration, Achromatopsia (CNGB3 Deletion, Alaskan Malamute Variant)
- 🏷 Day Blindness, Cone Degeneration, Achromatopsia (CNGB3 Exon 6, German Shorthaired Pointer Variant)
- 💽 Achromatopsia (CNGA3 Exon 7, German Shepherd Variant)
- Achromatopsia (CNGA3 Exon 7, Labrador Retriever Variant)
- Autosomal Dominant Progressive Retinal Atrophy (RHO)
- Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)
- 🌄 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)
- 🌄 Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)
- 📀 Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)
- 🌄 Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)
- 🌄 Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant)
- 😴 Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)
- 🌄 Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9, Australian Shepherd Variant)
- Primary Lens Luxation (ADAMTS17)
- 🜄 Congenital Stationary Night Blindness (RPE65, Briard Variant)
- 🜄 Congenital Stationary Night Blindness (LRIT3, Beagle Variant)
- 🛃 Macular Corneal Dystrophy, MCD (CHST6)
- 💽 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT)
- Cystinuria Type I-A (SLC3A1, Newfoundland Variant)
- Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)
- Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)
- 🌄 Polycystic Kidney Disease, PKD (PKD1)
- 💎 Protein Losing Nephropathy, PLN (NPHS1)

Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 30, English Springer Spaniel Variant)

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)

- Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3, Cocker Spaniel Variant) Fanconi Syndrome (FAN1, Basenji Variant) Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant) Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant) X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED (EDA Intron 8) Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7) **Canine Fucosidosis (FUCA1)** Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant) Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant) Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant) Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant) Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant) Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant) Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant) Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant) Lagotto Storage Disease (ATG4D) Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1) Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)
 - 🚫 Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)
 - 🜄 Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)
 - 💽 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)
 - 💽 Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)

Fembark

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

- 🚫 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)
- 🌄 Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)
- 🚫 Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)
- 🚫 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)
- 🍼 Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)
- C GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)
- C GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)
- 🔀 GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)
- GM2 Gangliosidosis (HEXB, Poodle Variant)
- 🔀 GM2 Gangliosidosis (HEXA, Japanese Chin Variant)
- 😴 Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)
- 🍼 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)
- 🏷 🛛 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant)
- 💽 Persistent Mullerian Duct Syndrome, PMDS (AMHR2)
- 💽 Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)
- 😴 Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)
- 💎 Neonatal Interstitial Lung Disease (LAMP3)
- 🔇 Recurrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant)
- 🛃 Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3)
- Alexander Disease (GFAP)
- 🔇 Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2, Beagle Variant)
- 🌄 Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)
- Cerebellar Hypoplasia (VLDLR, Eurasier Variant)
- 💽 Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1)
- Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

- 🌄 Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)
- 🌄 🛛 Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2)
- 🌄 Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)
- 💽 Hypomyelination and Tremors (FNIP2, Weimaraner Variant)
- 🔇 Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP1, English Springer Spaniel Variant)
- Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)
- 🚫 Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)
- C L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)
- Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- 💽 Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)
- 🚫 Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)
- Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)
- 💽 Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)
- 🍼 Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15, Kerry Blue Terrier Variant)
- 🌄 Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4, Chinese Crested Variant)
- Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV (RAB3GAP1, Rottweiler Variant)
- 🍼 Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS, Spaniel and Pointer Variant)
- 💽 Sensory Neuropathy (FAM134B, Border Collie Variant)
- 💙 Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10)
- 🗸 Juvenile Myoclonic Epilepsy (DIRAS1)
- 😴 Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 (GJA9)
- Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10)
- Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2)
- 💽 Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)
- Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)

DNA Test Report

Test Date: January 16th, 2023

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

- 🔽 Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant)
- Long QT Syndrome (KCNQ1)
- Cardiomyopathy and Juvenile Mortality (YARS2)
- Muscular Dystrophy (DMD, Golden Retriever Variant)
- 😴 Ullrich-like Congenital Muscular Dystrophy (COL6A1 Exon 3, Landseer Variant)
- C Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)
- 😴 Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)
- Centronuclear Myopathy, CNM (PTPLA)
- Exercise-Induced Collapse, EIC (DNM1)
- Inherited Myopathy of Great Danes (BIN1)
- Myostatin Deficiency, Bully Whippet Syndrome (MSTN)
- Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)
- 🔀 Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)
- 💽 Nemaline Myopathy (NEB, American Bulldog Variant)
- 🌄 Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Retriever Variant)
- 🔀 Inflammatory Myopathy (SLC25A12)
- 🌄 Hypocatalasia, Acatalasemia (CAT)
- 📀 Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)
- 🚫 Malignant Hyperthermia (RYR1)
- 🌄 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)
- 🌄 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)
- 😴 Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)
- Lundehund Syndrome (LEPREL1)
- Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)
- 🔀 Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

- 🔇 Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)
- Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)
- 🛃 Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)
- 🌄 🛛 Paroxysmal Dyskinesia, PxD (PIGN)
- Demyelinating Polyneuropathy (SBF2/MTRM13)
- C Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant)
- 😴 Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)
- C Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)
- 🔇 Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)
- 💽 Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)
- 🚺 Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)
- Ichthyosis (SLC27A4, Great Dane Variant)
- 💽 Ichthyosis (NIPAL4, American Bulldog Variant)
- 🍼 Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)
- Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)
- 🔀 Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)
- 💽 Hereditary Nasal Parakeratosis, HNPK (SUV39H2)
- 🚫 Musladin-Lueke Syndrome, MLS (ADAMTSL2)
- 🚫 Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)
- 🔇 Oculocutaneous Albinism, OCA (SLC45A2 Exon 6, Bullmastiff Variant)
- Bald Thigh Syndrome (IGFBP5)
- 🌄 Lethal Acrodermatitis, LAD (MKLN1)
- 💽 Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)
- 🔀 Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)
- 🔽 Hereditary Vitamin D-Resistant Rickets (VDR)

embk.me/chloe3917

ADDITIONAL CONDITIONS TESTED

- 😴 Oculoskeletal Dysplasia 2, Dwarfism-Retinal Dysplasia 2, drd2, OSD2 (COL9A2, Samoyed Variant)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2, Beagle Variant)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1, Dachshund Variant)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1, Golden Retriever Variant)
- 💽 Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1, Poodle Variant)
- Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)
- Craniomandibular Osteopathy, CMO (SLC37A2)
- Raine Syndrome, Canine Dental Hypomineralization Syndrome (FAM20C)
- 😴 Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)
- 😴 Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant)
- Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant)
- 🚫 Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)
- 🛃 Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)
- 🔇 Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)
- 💽 Spinocerebellar Ataxia (SCN8A, Alpine Dachsbracke Variant)
- 🚫 Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)
- 😴 Mucopolysaccharidosis Type VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinscher Variant)
- Pituitary Dwarfism (POU1F1 Intron 4, Karelian Bear Dog Variant)
- 🛃 Succinic Semialdehyde Dehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)
- 🔀 Early Bilateral Deafness (LOXHD1 Exon 38, Rottweiler Variant)
- 🔀 Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant)
- 🌄 Progressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)
- 🔀 Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)

Rembark

1%

DNA Test Report

embk.me/chloe3917

RESULT

INBREEDING AND DIVERSITY

CATEGORY

Inbreeding | Gene: n/a | Genetic Result: 1%

Inbreeding is a measure of how closely related this dog's parents were. The higher the number, the more closely related the parents. In general, greater inbreeding is associated with increased incidence of genetically inherited conditions.

Immune Response 1 | Gene: DRB1 | Genetic Result: High Diversity

Diversity in the Major Histocompatibility Complex (MHC) region of the genome has been found in some studies to be associated with the incidence of certain autoimmune diseases. Dogs that have less diversity in the MHC region—i.e. the Dog Leukocyte Antigen (DLA) inherited from the mother is similar to the DLA inherited from the father—are considered less immunologically diverse. A High Diversity result means the dog has two highly dissimilar haplotypes. A Low Diversity result means the dog has two similar but not identical haplotypes. A No Diversity result means the dog has inherited identical haplotypes from both parents. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Cushing's disease, but these findings have yet to be scientifically validated.

Immune Response 2 | Gene: DQA1 and DQB1 | Genetic Result: High Diversity

Diversity in the Major Histocompatibility Complex (MHC) region of the genome has been found in some studies to be associated with the incidence of certain autoimmune diseases. Dogs that have less diversity in the MHC region—i.e. the Dog Leukocyte Antigen (DLA) inherited from the mother is similar to the DLA inherited from the father—are considered less immunologically diverse. A High Diversity result means the dog has two highly dissimilar haplotypes. A Low Diversity result means the dog has two similar but not identical haplotypes. A No Diversity result means the dog has inherited identical haplotypes from both parents. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

Your Doy's COI: 1%

High Diversity

How common is this amount of diversity in mixed breed dogs:

High Diversity

How common is this amount of diversity in mixed breed dogs:

